610 research outputs found

    Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals

    Get PDF
    Since the time of Charles Darwin, studies of interspecific hybridization have been a major focus for evolutionary biologists. Although this phenomenon has often been viewed as problematic in the fields of ecology, taxonomy and systematics, it has become a primary source of data for studies on speciation and adaptation. Effects from genetic/evolutionary processes, such as recombination and natural selection, usually develop over extended periods of time; however, they are accelerated in cases of hybridization. Interspecific hybrids exhibit novel genomes that are exposed to natural selection, thus providing a key to unravel the ultimate causes of adaptation and speciation. Here we provide firstly a historic perspective of hybridization research, secondly a novel attempt to assess the extent of hybridization among animals and thirdly an overview of the reviews and case studies presented in this theme issue

    Blocking of transcription factor E2F/DP by dominant-negative mutants in a normal breast epithelial cell line efficiently inhibits apoptosis and induces tumor growth in scid mice

    Get PDF
    The transcription factor E2F is regulated during the cell cycle through interactions with the product of the retinoblastoma susceptibility gene and related proteins. It is thought that E2F-mediated gene regulation at the G1/S boundary and during S phase may be one of the rate-limiting steps in cell proliferation. It was reported that in vivo overexpression of E2F-1 in fibroblasts induces S phase entry and leads to apoptosis. This observation suggests that E2F plays a role in both cell cycle regulation and apoptosis. To further understand the role of E2F in cell cycle progression, cell death, and tumor development, we have blocked endogenous E2F activity in HBL-100 cells, derived from nonmalignant human breast epithelium, using dominant-negative mutants under the control of a tetracycline-dependent expression system. We have shown here that induction of dominant-negative mutants led to strong downregulation of transiently transfected E2F-dependent chloramphenicol acetyl transferase reporter constructs and of endogenous c-myc, which has been described as a target gene of the transcription factor E2F/DP. In addition, we have shown that blocking of E2F could efficiently protect from apoptosis induced by serum starvation within a period of 10 d, whereas control cells started to die after 24 h. Surprisingly, blocking of E2F did not alter the rate of proliferation or of DNA synthesis of these cells; this finding indicates that cell-cycle progression could be driven in an E2F-independent manner. In addition, we have been able to show that blocking of endogenous E2F in HBL-100 cells led to rapid induction of tumor growth in severe combined immunodeficiency mice. No tumor growth could be observed in mice that received mock-transfected clones or tetracycline to block expression of the E2F mutant constructs in vivo. Thus, it appears that E2F has a potential tumor-suppressive function under certain circumstances. Furthermore, we provide evidence that dysregulation of apoptosis may be an important step in tumorigenesis

    Hard-Loop Effective Action for Anisotropic Plasmas

    Full text link
    We generalize the hard-thermal-loop effective action of the equilibrium quark-gluon plasma to a non-equilibrium system which is space-time homogeneous but for which the parton momentum distribution is anisotropic. We show that the manifestly gauge-invariant Braaten-Pisarski form of the effective action can be straightforwardly generalized and we verify that it then generates all n-point functions following from collisionless gauge-covariant transport theory for a homogeneous anisotropic plasma. On the other hand, the Taylor-Wong form of the hard-thermal-loop effective action has a more complicated generalization to the anisotropic case. Already in the simplest case of anisotropic distribution functions, it involves an additional term that is gauge invariant by itself, but nontrivial also in the static limit.Comment: 12 pages. Version 3: typo in (15) corrected, note added discussing metric conventions use

    Hyperons analogous to the \Lambda(1405)

    Full text link
    The low mass of the Λ(1405)\Lambda(1405) hyperon with jP=1/2j^P = 1/2^-, which is higher than the ground state Λ(1116)\Lambda(1116) mass by 290 MeV, is difficult to understand in quark models. We analyze the hyperon spectrum in the bound state approach of the Skyrme model that successfully describes both the Λ(1116)\Lambda(1116) and the Λ(1405)\Lambda(1405). This model predicts that several hyperon resonances of the same spin but with opposite parity form parity doublets that have a mass difference of around 300 MeV, which is indeed realized in the observed hyperon spectrum. Furthermore, the existence of the Ξ(1620)\Xi(1620) and the Ξ(1690)\Xi(1690) of jP=1/2j^P=1/2^- is predicted by this model. Comments on the Ω\Omega baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore

    Turbulent luminance in impassioned van Gogh paintings

    Get PDF
    We show that the patterns of luminance in some impassioned van Gogh paintings display the mathematical structure of fluid turbulence. Specifically, we show that the probability distribution function (PDF) of luminance fluctuations of points (pixels) separated by a distance R compares notably well with the PDF of the velocity differences in a turbulent flow, as predicted by the statistical theory of A.N. Kolmogorov. We observe that turbulent paintings of van Gogh belong to his last period, during which episodes of prolonged psychotic agitation of this artist were frequent. Our approach suggests new tools that open the possibility of quantitative objective research for art representation

    ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials

    Full text link
    The partial wave projection of the Nijmegen soft-core potential model for Meson-Pair-Exchange (MPE) for NN-scattering in momentum space is presented. Here, nucleon-nucleon momentum space MPE-potentials are NN-interactions where either one or both nucleons contains a meson-pair vertex. Dynamically, the meson-pair vertices can be viewed as describing in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. Part of the MPE-vertices can be found in the chiral-invariant phenomenological Lagrangians that have a basis in spontaneous broken chiral symmetry. It is shown that the MPE-interactions are a very important component of the nuclear force, which indeed enables a very succesful description of the low and medium energy NN-data. Here we present a precise fit to the NN-data with the extended-soft-core (ESC) model containing OBE-, PS-PS-, and MPE-potentials. An excellent description of the NN-data for TLab350T_{Lab} \leq 350 MeV is presented and discussed. Phase shifts are given and a χp.d.p.2=1.15\chi^2_{p.d.p.} = 1.15 is reached.Comment: 27 pages, 5 PostScript figures, revtex

    New empirical fits to the proton electromagnetic form factors

    Get PDF
    Recent measurements of the ratio of the elastic electromagnetic form factors of the proton, G_Ep/G_Mp, using the polarization transfer technique at Jefferson Lab show that this ratio decreases dramatically with increasing Q^2, in contradiction to previous measurements using the Rosenbluth separation technique. Using this new high quality data as a constraint, we have reanalyzed most of the world e-p elastic cross section data. In this paper, we present a new empirical fit to the reanalyzed data for the proton elastic magnetic form factor in the region 0 < Q^2 < 30 GeV^2. As well, we present an empirical fit to the proton electromagnetic form factor ratio, G_Ep/G_Mp, which is valid in the region 0.1 < Q^2 < 6 GeV^2

    A biochemical and ultrastructural evaluation of the type 2 Gaucher mouse

    Get PDF
    Gaucher mice, created by targeted disruption of the glucocerebrosidase gene, are totally deficient in glucocerebrosidase and have a rapidly deteriorating clinical course analogous to the most severely affected type 2 human patients. An ultrastructural study of tissues from these mice revealed glucocerebroside accumulation in bone marrow, liver, spleen, and brain. This glycolipid had a characteristic elongated tubular structure and was contained in lysosomes, as demonstrated by colocalization with both ingested carbon particles and cathepsin D. In the central nervous system (CNS), glucocerebroside was diffusely stored in microglia cells and in brainstem and spinal cord neurons, but not in neurons of the cerebellum or cerebral cortex. This rostralcaudal pattern of neuronal lipid storage in these Gaucher mice replicates the pattern seen in type 2 human Gaucher patients and clearly demonstrates that glycosphingolipid catabolism and/or accumulation varies within different brain regions. Surprisingly, the cellular pathology of tissue from these Gaucher mice was relatively mild, and suggests that the early and rapid demise of both Gaucher mice and severely affected type 2 human neonates may be the result of both a neurotoxic metabolite, such as glucosylsphingosine, and other factors, such as skin water barrier dysfunction secondary to the absence of glucocerebrosidase activity

    Octet-Baryon Form Factors in the Diquark Model

    Full text link
    We present an alternative parameterization of the quark-diquark model of baryons which particularly takes care of the most recent proton electric form-factor data from the E136 experiment at SLAC. In addition to electromagnetic form factors of the nucleon, for which good agreement with data is achieved, we discuss the weak axial vector form factor of the nucleon as well as electromagnetic form factors of Λ\Lambda and Σ\Sigma hyperons. Technical advance in calculating the pertinent analytic expressions within perturbative quantum chromodynamics is gained by formulating the wave function of the quark-diquark system in a covariant way. Finally, we also comment on the influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures appended at the end of the latex fil
    corecore